Explicație pas cu pas:
[tex]{ \sqrt{20} }^{2} + {15}^{2} \cdot \sqrt{27} = x \cdot {( - 3)}^{3}[/tex]
[tex]20 + {(3 \cdot 5)}^{2} \cdot 3\sqrt{3} = x \cdot ({ - 3}^{3})[/tex]
[tex]20 + {5}^{2} \cdot {3}^{3} \sqrt{3} = x \cdot ({- 3}^{3}) \ | : ({ - 3}^{3})[/tex]
[tex]x = \frac{20 + {5}^{2} \cdot {3}^{3} \sqrt{3}}{{ - 3}^{3}} = \frac{20}{{ - 3}^{3}} + \frac{{5}^{2} \cdot {3}^{3} \sqrt{3}}{{ - 3}^{3}} \\ x = - \frac{20}{27} - 25 \sqrt{3}[/tex]