👤

15 Arătați că fracția Rezolvare:

3¹•3²•.....•3^2013
------------------
(27^1007)^671

este echiunitară.
Va rog.Urgent.Dau Coroana!!​


Răspuns :

Răspuns:

Explicație pas cu pas:

Vezi imaginea STEFANBOIU

Răspuns:

1

Explicație pas cu pas:

[tex]\frac{ {3}^{1} \cdot {3}^{2} \cdot...\cdot{3}^{2013}}{ {\left({27}^{1007} \right)}^{671}} = \frac{ {3}^{1 + 2 + ... + 2013}}{{\left({( {3}^{3} )}^{1007} \right)}^{671}} = \\ = \frac{ {3}^{ \frac{2013 \cdot 2014}{2} }}{ {3}^{3\cdot1007\cdot671} } = \frac{ {3}^{2013 \cdot 1007}}{ {3}^{20133\cdot1007} } = \red{\bf1} [/tex]

q.e.d.