va rog 14 :) frumos si repede.

Răspuns:
Explicație pas cu pas:
a)
[tex] \sqrt{20x {}^{4} } = \sqrt{ {2}^{2} \times 5x {}^{4} } = 2x {}^{2} \sqrt{5} =2 \sqrt{5} x{}^{2} \\ [/tex]
b)
[tex] \sqrt{11x {}^{3} } = \sqrt{11x {}^{2} \times x} =x \sqrt{11x} [/tex]
c)
[tex] \sqrt{ \frac{2x {}^{3} }{ 3y {}^{2}} } = \frac{ \sqrt{2x {}^{3} } }{ \sqrt{3y {}^{2} } } = \frac{ {}^{ \sqrt{3}) } x \sqrt{2x} }{ \sqrt{3}y } = \frac{x \sqrt{6x} }{3y} \\ [/tex]
d)
[tex] \sqrt{18 xy {}^{3} } = \sqrt{3 {}^{2} \times 2xy {}^{2} \times y } = 3y \sqrt{2xy} \\ [/tex]