👤

Se consideră matricele [tex]$A=\left(\begin{array}{cc}2 & 1 \\ -2 & -1\end{array}\right), B=\left(\begin{array}{cc}2 & 3 \\ -4 & -6\end{array}\right)$[/tex] şi [tex]$I_{2}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$[/tex].

5p 1. Arătați că det [tex]$A=0$[/tex].

5p 2. Calculați [tex]$\operatorname{det}(A+B)$[/tex].

5p 3. Arătați că [tex]$A \cdot A=A$[/tex].

5p 4. Calculați [tex]$\operatorname{det}(A \cdot B-B \cdot A)$[/tex].

5p 5. Determinați numerele reale [tex]$x$[/tex] pentru care [tex]$\operatorname{det}\left(B \cdot B+x I_{2}\right)=0$[/tex].

5p 6. Determinați numerele reale [tex]$p$[/tex] şi [tex]$q$[/tex], ştiind că [tex]$(A+B)(A+B)=p A+q B+B \cdot A$[/tex].


Răspuns :

[tex]A=\left(\begin{array}{cc}2 & 1 \\ -2 & -1\end{array}\right)[/tex]

[tex]B=\left(\begin{array}{cc}2 & 3 \\ -4 & -6\end{array}\right)[/tex]

1)

Calculam detA, facem diferenta dintre produsul diagonalelor

detA=2×(-1)-1×(-2)=-2+2=0

2)

det(A+B)=4×(-7)-4×(-6)=-28+24=-4

3)

[tex]A\cdot A=\left(\begin{array}{cc}2 & 1 \\ -2 & -1\end{array}\right)\cdot \left(\begin{array}{cc}2 & 1 \\ -2 & -1\end{array}\right)=\left(\begin{array}{cc}2 & 1 \\ -2 & -1\end{array}\right)=A[/tex]

4)

det(AB-BA)

[tex]A\cdot B=\left(\begin{array}{cc}2 & 1 \\ -2 & -1\end{array}\right)\cdot \left(\begin{array}{cc}2 & 3 \\ -4 & -6\end{array}\right)=\left(\begin{array}{cc}0 & 0 \\ 0 & 0\end{array}\right)=O_2[/tex]

[tex]B\cdot A=\left(\begin{array}{cc}2 & 3 \\ -4 & -6\end{array}\right)\cdot \left(\begin{array}{cc}2 & 1 \\ -2 & -1\end{array}\right)=\left(\begin{array}{cc}-2 & -1 \\ 4 & 2\end{array}\right)[/tex]

[tex]AB-BA=\left(\begin{array}{cc}0 & 0 \\ 0 &0\end{array}\right)-\left(\begin{array}{cc}-2 & -1 \\ 4 & 2\end{array}\right)=\left(\begin{array}{cc}2 & 1 \\ -4 & -2\end{array}\right)[/tex]

det(AB-BA)=-4+4=0

5)

[tex]det(B\cdot B+xI_2)=0[/tex]

[tex]B\cdot B =\left(\begin{array}{cc}2 & 3 \\ -4 & -6\end{array}\right)\cdot \left(\begin{array}{cc}2 & 3 \\ -4 & -6\end{array}\right)=\left(\begin{array}{cc}-8 & -12 \\ 16& 24\end{array}\right)=-4B\\\\\left(\begin{array}{cc}-8 & -12 \\ 16& 24\end{array}\right)+\left(\begin{array}{cc}x &0\\ 0& x\end{array}\right)=\left(\begin{array}{cc}-8+x & -12 \\ 16& 24+x\end{array}\right)[/tex]

[tex]\left|\begin{array}{cc}-8+x & -12 \\ 16& 24+x\end{array}\right|=(-8+x)(24+x)+192\\\\-192-8x+24x+x^2+192=0\\\\x^2+16x=0\\\\x(x+16)=0\\\\x=0\ si\ x=-16[/tex]

6)

(A+B)(A+B)=A·A+AB+BA+B·B=A+O₂+BA-4B

A+O₂+BA-4B=pA+qB+BA

A-4B=pA+qB

p=1 si q=-4

Un alt exercitiu cu matrice gasesti aici: https://brainly.ro/tema/9919024

#BAC2022

#SPJ4