Va rog sa rezolvați si sa explicați cum

Explicație pas cu pas:
[tex] \frac{1}{3} - \frac{1}{3} \{ \frac{1}{3} + \frac{1}{3} \left[ \frac{1}{3} - \frac{1}{3} \left( \frac{1}{3}x - 1 \right) \right]\} = \frac{1}{12} \\ [/tex]
[tex] - \frac{1}{3} \{ \frac{1}{3} + \frac{1}{3} \left[ \frac{1}{3} - \frac{1}{3} \left( \frac{1}{3}x - 1 \right) \right]\} = \frac{1}{12} - \frac{1}{3} \\ [/tex]
[tex]- \frac{1}{3} \{ \frac{1}{3} + \frac{1}{3} \left[ \frac{1}{3} - \frac{1}{3} \left( \frac{1}{3}x - 1 \right) \right]\} = \frac{1 - 4}{12} \\ [/tex]
[tex]- \frac{1}{3} \{ \frac{1}{3} + \frac{1}{3} \left[ \frac{1}{3} - \frac{1}{3} \left( \frac{1}{3}x - 1 \right) \right]\} = - \frac{3}{12} \\ [/tex]
[tex]\frac{1}{3} \{ \frac{1}{3} + \frac{1}{3} \left[ \frac{1}{3} - \frac{1}{3} \left( \frac{1}{3}x - 1 \right) \right]\} = \frac{1}{4} \\ [/tex]
[tex] \frac{1}{3} + \frac{1}{3} \left[ \frac{1}{3} - \frac{1}{3} \left( \frac{1}{3}x - 1 \right) \right] = \frac{1}{4} \times \frac{3}{1} \\ [/tex]
[tex]\frac{1}{3} \left[ \frac{1}{3} - \frac{1}{3} \left( \frac{1}{3}x - 1 \right) \right] = \frac{3}{4} - \frac{1}{3} \\ [/tex]
[tex]\frac{1}{3} \left[ \frac{1}{3} - \frac{1}{3} \left( \frac{1}{3}x - 1 \right) \right] = \frac{3 \times 3 - 4}{12}\\ [/tex]
[tex]\frac{1}{3} - \frac{1}{3} \left( \frac{1}{3}x - 1 \right) = \frac{5}{12} \times \frac{3}{1} \\ [/tex]
[tex] - \frac{1}{3} \left( \frac{1}{3}x - 1 \right) = \frac{5}{4} - \frac{1}{3} \\ [/tex]
[tex]- \frac{1}{3} \left( \frac{1}{3}x - 1 \right) = \frac{5 \times 3 - 4}{12} \\ [/tex]
[tex] - \frac{1}{3} \left( \frac{1}{3}x - 1 \right) = \frac{11}{12} \\ [/tex]
[tex]\frac{1}{3}x - 1 = \frac{11}{12} \times\left( - \frac{3}{1}\right) \\ [/tex]
[tex]\frac{1}{3}x - 1 = - \frac{11}{4} \\ [/tex]
[tex]\frac{1}{3}x = - \frac{11}{4} + 1 \\[/tex]
[tex]\frac{1}{3}x = - \frac{11 + 4}{4} \\[/tex]
[tex]x = - \frac{7}{4} \times \frac{3}{1} \\[/tex]
[tex]x = - \frac{21}{4}\\[/tex]