Explicație pas cu pas:
b)
[tex]f(x) = - 3x + 5m, A(2m,-m) \\ f(2m) = - m \\ - 3 \times 2m + 5m = - m \\ - 6m + 5m = - m = > - m = - m[/tex]
=> m ∈ R
c)
[tex]f(x) = \frac{m}{3}x - 1, A\left( \frac{1}{2} ,m\right) \\ f\left( \frac{1}{2}\right) = m \\ \frac{m}{3} \times \frac{1}{2} - 1 = m \\ m - 6 = 6m \\ 5m = - 6 = > m = - \frac{6}{5} [/tex]
d)
[tex]f(x) = - x + m,A(m,m) \\ f(m) = m \\ - m + m = m = > m = 0[/tex]