👤

Se consideră matricele [tex]$I_{3}=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$[/tex] şi [tex]$A(x)=\left(\begin{array}{ccc}x & 1 & -x \\ 1 & 0 & 1 \\ -x & 1 & x\end{array}\right)$[/tex], unde [tex]$x$[/tex] este număr real.

[tex]$5 \mathbf{p}$[/tex] a) Arătați că [tex]$\operatorname{det}(A(1))=-4$[/tex].

5p b) Demonstrați că [tex]$\operatorname{det}(A(x) A(y)-A(2 x y))=0$[/tex], pentru orice numere reale [tex]$x$[/tex] și [tex]$y$[/tex].

[tex]$5 p$[/tex] c) Determinați numărul natural [tex]$n$[/tex] pentru care [tex]$A(1) A\left(\frac{1}{2}\right)+A(2) A\left(\frac{1}{4}\right)+\ldots+A(1010) A\left(\frac{1}{2020}\right)=n I_{3}$[/tex].


Răspuns :

[tex]A(x)=\left(\begin{array}{ccc}x & 1 & -x \\ 1 & 0 & 1 \\ -x & 1 & x\end{array}\right)[/tex]

a)

Calculam A(1), inlocuind pe x cu 1, apoi calculam det(A(1)), adaugand primele doua linii

[tex]A(1)=\left(\begin{array}{ccc}1 & 1 & -1 \\ 1 & 0 & 1 \\ -1 & 1 & 1\end{array}\right)[/tex]

[tex]det(A(1))=\left|\begin{array}{ccc}1 & 1 & -1 \\ 1 & 0 & 1 \\ -1 & 1 & 1\end{array}\right|[/tex]

                       1      1    -1

                       1      0    1

det(A(1))=(0-1-1)-(0+1+1)=-2-2=-4

b)

Demonstrati ca [tex]{det}(A(x) A(y)-A(2 x y))=0[/tex]

Calculam prima data A(x)A(y)

[tex]A(x)A(y)=\left(\begin{array}{ccc}x & 1 & -x \\ 1 & 0 & 1 \\ -x & 1 & x\end{array}\right)\times \left(\begin{array}{ccc}y & 1 & -y \\ 1 & 0 & 1 \\ -y & 1 & y\end{array}\right)=\\\\\left(\begin{array}{ccc}2xy+1 &0 & -2xy+1 \\ 0 & 2 & 0 \\ -2xy+1 & 0 & 2xy+1\end{array}\right)[/tex]

Apoi calculam A(x)A(y)-A(2xy)

[tex]A(x)A(y)-A(2xy)=\left(\begin{array}{ccc}2xy+1 &0 & -2xy+1 \\ 0 & 2 & 0 \\ -2xy+1 & 0 & 2xy+1\end{array}\right)-\left(\begin{array}{ccc}2xy &1 & -2xy \\ 1 & 0 & 1 \\ -2xy & 1 & 2xy\end{array}\right)=\left(\begin{array}{ccc}1 &-1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 1\end{array}\right)[/tex]

Calculam det(A(x)A(y)-A(2xy))

[tex]det(A(x)A(y)-A(2xy))=\left|\begin{array}{ccc}1 &-1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 1\end{array}\right|[/tex]

                                              1      -1       1

                                             -1      2      -1

det(A(x)A(y)-A(2xy))=(2+1+1)-(2+1+1)=4-4=0

c)

[tex]A(1) A\left(\frac{1}{2}\right)+A(2) A\left(\frac{1}{4}\right)+\ldots+A(1010) A\left(\frac{1}{2020}\right)=n I_{3}[/tex]

Ne folosim de punctul b, stim ca

[tex]A(x)A(y)=\left(\begin{array}{ccc}2xy+1 &0 & -2xy+1 \\ 0 & 2 & 0 \\ -2xy+1 & 0 & 2xy+1\end{array}\right)[/tex]

Observam ca daca [tex]y=\frac{1}{2x}[/tex] atunci

[tex]A(x)A(y)=A(x)A(\frac{1}{2x})= \left(\begin{array}{ccc}2 &0 & 0\\ 0 & 2 & 0 \\ 0 & 0 & 2\end{array}\right)[/tex]

Dam factor comun pe 2 si vom obtine:

[tex]A(x)A(y)=A(x)A(\frac{1}{2x})= 2\times \left(\begin{array}{ccc}1 &0 & 0\\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)=2I_3[/tex]

[tex]A(1) A\left(\frac{1}{2}\right)+A(2) A\left(\frac{1}{4}\right)+\ldots+A(1010) A\left(\frac{1}{2020}\right)=n I_{3}[/tex]

Observam ca fiecare termen va fi egal cu 2I₃. Avem 1010 termeni deci suma noastra va fi egala cu:

[tex]A(1) A\left(\frac{1}{2}\right)+A(2) A\left(\frac{1}{4}\right)+\ldots+A(1010) A\left(\frac{1}{2020}\right)=1010\times 2I_3[/tex]

[tex]1010\times 2I_3=nI_3[/tex]

De aici rezulta ca n=2020

Un exercitiu similar de bac gasesti aici: https://brainly.ro/tema/1009519

#BAC2022