👤

Am cateva exercitii legate de vectori si trigonometrie la care ar fi de ajutor un raspuns, am incercuit cu rosu un subpunct deoarece doar acela m-a blocat. Multumesc in avans! Nu cred ca ar mai fi trebuit sa mentionez ca ofer coroana

Am Cateva Exercitii Legate De Vectori Si Trigonometrie La Care Ar Fi De Ajutor Un Raspuns Am Incercuit Cu Rosu Un Subpunct Deoarece Doar Acela Ma Blocat Multume class=
Am Cateva Exercitii Legate De Vectori Si Trigonometrie La Care Ar Fi De Ajutor Un Raspuns Am Incercuit Cu Rosu Un Subpunct Deoarece Doar Acela Ma Blocat Multume class=
Am Cateva Exercitii Legate De Vectori Si Trigonometrie La Care Ar Fi De Ajutor Un Raspuns Am Incercuit Cu Rosu Un Subpunct Deoarece Doar Acela Ma Blocat Multume class=
Am Cateva Exercitii Legate De Vectori Si Trigonometrie La Care Ar Fi De Ajutor Un Raspuns Am Incercuit Cu Rosu Un Subpunct Deoarece Doar Acela Ma Blocat Multume class=
Am Cateva Exercitii Legate De Vectori Si Trigonometrie La Care Ar Fi De Ajutor Un Raspuns Am Incercuit Cu Rosu Un Subpunct Deoarece Doar Acela Ma Blocat Multume class=

Răspuns :

Paritatea functiei cos si sin

cos(-x)=cos x

sin(-x)=-sin x

Stim ca:

cos (360+x)=cos x

sin(360+x)=sin x

cos(180+x)=-cos x

sin(180+x)=-sin x

cos(180-x)=-cos x

sin(180-x)=sin x

sin (360-x)=-sin x

cos(360-x)=cos x

sin(2kπ+x)=sin x

cos(2kπ+x)=cos x

c)

[tex]cos(-\frac{281\pi}{3} )=cos(\frac{281\pi}{3} )=cos( 300)\\\\[/tex]

cos 300°=cos (180+120)= -cos 120°

-cos 120°=-cos(180-60)=cos 60°=[tex]\frac{1}{2}[/tex]

[tex]cos(-\frac{281\pi}{3} )=\frac{1}{2}[/tex]

d)

[tex]sin(-\frac{407\pi}{4} )=-sin(\frac{407\pi}{4} )=-sin( 315)\\\\[/tex]

-sin 315°=-sin (360-45)=sin 45°=[tex]\frac{\sqrt{2} }{2}[/tex]

[tex]sin(-\frac{407\pi}{4} )=\frac{\sqrt{2} }{2}[/tex]

e)

[tex]sin(\frac{251\pi}{2} )=sin(270)[/tex]

sin 270°=sin (180+90)=-sin 90°=-1

[tex]sin(\frac{251\pi}{2} )=-1[/tex]

f)

[tex]cos(783\pi)=cos(180)=-1[/tex]

3)

[tex]cos\ x =-\frac{1}{5}[/tex]

d) Stim ca  [tex]ctg\ x=\frac{cosx}{sinx}[/tex]

Aflam sin x din formula fundamentala a trigonometriei:

sin²x+cos²x=1

[tex]sin^2x+\frac{1}{25}=1\\\\ sin^2x=\frac{24}{25} \\\\sinx=-\frac{2\sqrt{6} }{5}[/tex] (este negativ, fiind in cadranul 3)

[tex]ctg\ x=\frac{cosx}{sinx}=\frac{-\frac{1}{5} }{-\frac{2\sqrt{6} }{5} }=\frac{1}{2\sqrt{6} }=\frac{\sqrt{6} }{12}[/tex]

4)

[tex]ctgx=\frac{4}{3}[/tex]

a)

[tex]ctg (a+b)=\frac{ctga\times ctgb-1}{ctga+ctgb}[/tex]

[tex]ctg (x+\frac{\pi}{4} )=ctg (x+45)=\frac{ctgx\times ctg45-1}{ctgx+ctg45}=\frac{ctgx-1}{ctgx+1}[/tex]

[tex]ctg (x+\frac{\pi}{4} )=\frac{\frac{4}{3}-1 }{\frac{4}{3}+1} =\frac{1}{7}[/tex]

b)

[tex]tgx=\frac{1}{ctgx} =\frac{3}{4}[/tex]

[tex]tg2x=\frac{2tgx}{1-tg^2x}[/tex]

[tex]tg2x=\frac{2\times \frac{3}{4} }{1-\frac{9}{16} } =\frac{\frac{3}{2} }{\frac{7}{16} }=\frac{24}{7}[/tex]

c)

[tex]\frac{cosx}{sinx} =\frac{4}{3} \\\\cosx=\sqrt{1-sin^2x}[/tex]

Notam sin x=y

[tex]\frac{4}{3} =\frac{\sqrt{1-y^2} }{y}[/tex]

[tex]4y=3\sqrt{1-y^2} \ \ \ \ |^2\\\\16y^2=9-9y^2\\\\25y^2=9\\\\y=sinx=-\frac{3}{5} \ (se\ afla\ in\ cadranul\ 3,\ deci\ este\ negativ)[/tex]

[tex]cosx=\sqrt{1-\frac{9}{25} } =-\frac{4}{5}[/tex]

d)

[tex]tgx=\frac{2tg\frac{x}{2} }{1-tg^\frac{x}{2} } \\\\Notam\ tg\frac{x}{2} =y[/tex]

[tex]\frac{3}{4} =\frac{2y}{1-y^2}[/tex]

3-3y²=8y

3y²+8y-3=0

Δ=b²-4ac

Δ=64+36=100

[tex]y=\frac{-b+\Delta}{2a}[/tex]

[tex]y=\frac{-8+10}{6} =\frac{1}{3} =tg\frac{x}{2}[/tex]