ajutor!!
Dau coroana

Explicație pas cu pas:
[tex]{x}^{2} + 2x + 1 = {(x + 1)}^{2} [/tex]
[tex]{x}^{2} - 2x + 1 = {(x - 1)}^{2} [/tex]
[tex]{x}^{2} +10x + 25 = {x}^{2} + 2 \times 5x + {5}^{2} = {(x + 5)}^{2} [/tex]
[tex]{x}^{2} - 10x + 25= {x}^{2} - 2 \times 5x + {5}^{2} = {(x - 5)}^{2} [/tex]
[tex]9{x}^{2} - 6x + 1= {(3x)}^{2} - 2 \times 3x + 1 = {(3x - 1)}^{2} [/tex]
[tex]{x}^{2} + 4x + 4 = {x}^{2} + 2 \times 2x + {2}^{2} = {(x + 2)}^{2} [/tex]
[tex]{x}^{2} - 4x + 4 = {x}^{2} - 2 \times 2x + {2}^{2} = {(x - 2)}^{2} [/tex]
[tex]{x}^{2} + 12x + 36 = {x}^{2} + 2 \times 6x + {6}^{2} = {(x + 6)}^{2} [/tex]
[tex]{x}^{2} - 12x + 36 = {x}^{2} - 2 \times 6x + {6}^{2} = {(x - 6)}^{2} [/tex]
[tex]4 {x}^{2} - 4x + 1 = {(2x)}^{2} - 2 \times 2x + 1 = {(2x - 1)}^{2} [/tex]
[tex] {x}^{2} + 6x + 9 = {x}^{2} + 2 \times 3x \times {3}^{2} = {(x + 3)}^{2} [/tex]
[tex]{x}^{2} - 6x + 9 = {x}^{2} - 2 \times 3x + {3}^{2} = {(x - 3)}^{2} [/tex]
[tex] {x}^{2} + 14x + 49 = {x}^{2} + 2 \times 7x + {7}^{2} = {(x + 7)}^{2} [/tex]
[tex]{x}^{2} - 14x + 49 = {x}^{2} - 2 \times 7x + {7}^{2} = {(x - 7)}^{2}[/tex]
[tex]4{x}^{2} + 12x + 9 = {(2x)}^{2} + 2 \times 2 \times 3x + {3}^{2} = {(2x + 3)}^{2}[/tex]
[tex]{x}^{2} + 8x + 16 = {x}^{2} + 2 \times 4x + {4}^{2} = {(x + 4)}^{2}[/tex]
[tex]{x}^{2} - 8x + 16 = {x}^{2} - 2 \times 4x + {4}^{2} = {(x - 4)}^{2}[/tex]
[tex]{x}^{2} + 16x + 64 = {x}^{2} + 2 \times 8x + {8}^{2} = {(x + 8)}^{2}[/tex]
[tex]{x}^{2} - 16x + 64 = {x}^{2} - 2 \times 8x + {8}^{2} = {(x - 8)}^{2}[/tex]
[tex]9{x}^{2} - 12x + 4 = {(3x)}^{2} - 2 \times 3 \times 2x + {2}^{2} = {(3x - 2)}^{2}[/tex]
[tex]16{x}^{2} - 40x + 25 = {(4x)}^{2} - 2 \times 4 \times 5x + {5}^{2} = {(4x - 5)}^{2}[/tex]
[tex]25{x}^{2} - 60x + 36= {(5x})^{2} - 2 \times 5 \times 6x + {6}^{2} = {(5x - 6)}^{2}[/tex]
[tex]4{x}^{2} - 12x + 9 = {(2x)}^{2} - 2 \times 2 \times 3x + {3}^{2} = {(2x - 3)}^{2}[/tex]
[tex]16{x}^{2} + 8x + 1 = {(4x)}^{2} + 2 \times 4x + 1 = {(4x + 1)}^{2}[/tex]