Răspuns :
Răspuns: 128 → numere naturale mai mici decât 10⁷, ce se scriu numai cu cifrele 0 și 1
Explicație pas cu pas:
Conform cerinței umerele se formează doar din cifrele 0 și 1
10⁷ = 10 000 000 ⇒ număr de 8 cifre
Numerle noastre trebuie să fie mai mici decât 10⁷ ⇒ înseamnă că cel mai mare număr poate fi un număr de 7 cifre
Numere de o cifra ce se pot forma cu cifrele 0 și 1
0; 1 → 2 numere
Numere de două cifre ce se pot forma cu cifrele 0 și 1
10; 11 → 2 numere
Numere de trei cifre ce se pot forma cu cifrele 0 și 1
fie abc → numele de trei cifre ce respectă condițiile problemei
a ≠ 0
a = 1 ⇒ a ia o valoare
b ∈ {0; 2} ⇒ b ia 2 valori
c ∈ {0; 2} ⇒ c ia 2 valori
Din cele trei relații de mai sus conform regulii produsului avem: 1 · 2 · 2 = 4 numere de trei cifre ce se pot forma cu cifrele 0 și 1
Numere de patru cifre ce se pot forma cu cifrele 0 și 1
fie abcd → numele de patru cifre ce respectă condițiile problemei
a ≠ 0
a = 1 ⇒ a ia o valoare
b ∈ {0; 2} ⇒ b ia 2 valori
c ∈ {0; 2} ⇒ c ia 2 valori
d ∈ {0; 2} ⇒ d ia 2 valori
Din relațiile de mai sus conform regulii produsului avem 1 · 2 · 2 · 2 = 8 numere de patru cifre ce se pot forma cu cifrele 0 și 1
Numere de cinci cifre ce se pot forma cu cifrele 0 și 1
fie abcde → numele de cinci cifre ce respectă condițiile problemei
a ≠ 0
a = 1 ⇒ a ia o valoare
b ∈ {0; 2} ⇒ b ia 2 valori
c ∈ {0; 2} ⇒ c ia 2 valori
d ∈ {0; 2} ⇒ d ia 2 valori
e ∈ {0; 2} ⇒ e ia 2 valori
Din relațiile de mai sus conform regulii produsului avem 1 · 2 · 2 · 2 · 2 = 16 numere de cinci cifre ce se pot forma cu cifrele 0 și 1
Numere de șase cifre ce se pot forma cu cifrele 0 și 1
fie abcdef → numele de șase cifre ce respectă condițiile problemei
a ≠ 0
a = 1 ⇒ a ia o valoare
b ∈ {0; 2} ⇒ b ia 2 valori
c ∈ {0; 2} ⇒ c ia 2 valori
d ∈ {0; 2} ⇒ d ia 2 valori
e ∈ {0; 2} ⇒ e ia 2 valori
f ∈ {0; 2} ⇒ f ia 2 valori
Din relațiile de mai sus conform regulii produsului avem 1 · 2 · 2 · 2 · 2 · 2 = 32 numere de șase cifre ce se pot forma cu cifrele 0 și 1
Numere de șapte cifre ce se pot forma cu cifrele 0 și 1
fie abcdefg → numele de șapte cifre ce respectă condițiile problemei
a ≠ 0
a = 1 ⇒ a ia o valoare
b ∈ {0; 2} ⇒ b ia 2 valori
c ∈ {0; 2} ⇒ c ia 2 valori
d ∈ {0; 2} ⇒ d ia 2 valori
e ∈ {0; 2} ⇒ e ia 2 valori
f ∈ {0; 2} ⇒ f ia 2 valori
g ∈ {0; 2} ⇒ g ia 2 valori
Din relațiile de mai sus conform regulii produsului avem 1 · 2 · 2 · 2 · 2 · 2 · 2 = 64 numere de șapte cifre ce se pot forma cu cifrele 0 și 1
Total numere = 2 + 2 + 4 + 8 + 16 + 32 + 64
Total numere = 128 → numere naturale mai mici decât 10⁷, ce se scriu numai cu cifrele 0 și 1
==pav38==
Sper să fie de folos răspunsul meu chiar dacă vine cu 5 zile întârziere față de când ai postat exercițiul.
Baftă multă !
Vă mulțumim că ați ales să vizitați site-ul nostru dedicat Matematică. Sperăm că informațiile disponibile v-au fost utile. Dacă aveți întrebări sau aveți nevoie de asistență suplimentară, vă rugăm să ne contactați. Revenirea dumneavoastră ne va bucura, iar pentru acces rapid, nu uitați să ne salvați la favorite!